Slope Stability in Opencast Mines – Types of Failures & Stabilization Methods | DGMS Notes


                         🔹 1. Introduction

Slope stability is a critical safety and economic factor in opencast mines.
A stable slope ensures:
  • Safety of workers
  • Reduced rockfall hazards
  • Lower stripping ratio
  • Cost-effective mine design
Unstable slopes may fail suddenly, leading to:
  • Bench collapse
  • Rockfall
  • Slide of massive material
  • Equipment damage
  • Fatalities
DGMS requires systematic study and monitoring of slopes in all surface mines.

🔹 2. Types of Slopes in Opencast Mines

1) Bench SlopeAngle of each working bench (bench face).

2) Inter-ramp SlopeCombined angle of multiple benches without a catch berm.

3) Overall SlopeAngle from top to bottom of the final pit.

🔹 3. Factors Affecting Slope Stability

A. Geological Factors
  • Joints, faults, bedding planes
  • Weathered or altered zones
  • Weak layers within strong strata
  • Presence of clay seams
  • Shear zones
B. Hydrogeological Factors
  • Groundwater pressure
  • Rainfall infiltration
  • Poor drainage
C. Mining Factors
  • Blasting intensity
  • Bench geometry
  • Height of slope
  • Excavation method
D. Rock Mass Properties
  • RMR (Rock Mass Rating)
  • UCS (Uniaxial Compressive Strength)
  • Cohesion & friction angle

🔹 4. Types of Slope Failures

1) Plane FailureOccurs when a rock block slides along a planar discontinuity.

Conditions:
  • Discontinuity dips towards free face
  • Dip of discontinuity > friction angle
  • Daylighting of joint

2) Wedge FailureTwo intersecting joints form a wedge that slides along the line of intersection.

3) Circular FailureCommon in soil or weak rock.

Failure surface is circular / rotational.
4) Toppling FailureOccurs when steeply dipping slabs rotate and topple forward.

5) RockfallSmall, individual rocks fall due to:

  • Weathering
  • Over-steepening
  • Vibrations
6) RavellingGradual detachment of small fragments from the slope surface.

🔹 5. Indicators of Potential Slope Failure

  • Cracks at crest
  • Bulging at toe
  • Increased seepage
  • Rock noise / popping
  • Overhang formation
  • Tension cracks

🔹 6. Slope Stability Analysis Methods

A. Limit Equilibrium Method (LEM)Used for circular failure surfaces.

B. Kinematic AnalysisFor plane & wedge failures.

C. Numerical ModellingFLAC, PLAXIS, Phase2D.

D. Rock Mass ClassificationRMR, SMR, GSI used to evaluate stability.

🔹 7. Factor of Safety (FOS)

FOS=Shear StrengthShear Stress\text{FOS} = \frac{\text{Shear Strength}}{\text{Shear Stress}}FOS=Shear StressShear StrengthMinimum Acceptable Values:

  • 1.2 – 1.3 for working slopes
  • 1.4 – 1.5 for final pit slopes

🔹 8. Slope Stabilization Techniques

1) BenchingReducing slope height by creating benches.

2) Catch BermsCatch falling debris before it reaches bottom.

3) Drainage Control
  • Horizontal drains
  • Surface drains
  • Dewatering wells
4) Rock Bolting & AnchoringImproves cohesion and interlock.

5) Shotcrete / MeshPrevents ravelling and small rockfall.

6) ScalingManual removal of loose rock.

7) Controlled Blasting Techniques
  • Pre-splitting
  • Cushion blasting
  • Line drilling
8) Retaining Walls & Gabions

🔹 9. Slope Monitoring Methods

Instrumental Monitoring
  • Prism reflectors + Total Station
  • GPS monitoring
  • Laser scanning
  • Inclinometers
  • Extensometers
  • Piezometers
Visual Monitoring
  • Cracks at crest
  • Rockfall signs
  • Water seepage
Slope Radar (SSR)Continuous real-time radar monitoring.

🔹 10. Text Diagram – Slope Failure Types

Plane Failure: Wedge Failure: Circular Failure:
\ | \ / ______ \ | \ / / \ \____| \__/ /________\
Toppling Failure:
| | | |\ | | | | \ | | | | \__ (Toppling)



🔥  25 MCQs (DGMS Pattern) with Solutions
1) Plane failure occurs along —

a) Circular arc
b) Planar discontinuity
c) Random blocks
d) Clay seam
e) None
Answer: b
2) Wedge failure is caused by —

a) 1 joint only
b) Intersection of two joints
c) Soft soil
d) Water inflow
e) None
Answer: b
3) Circular failure is common in —

a) Hard rock
b) Soil and weak rock
c) Coal pillars
d) Iron ore benches
e) None
Answer: b
4) Toppling failure occurs when —

a) Rocks dip away
b) Rocks dip steeply toward the face
c) Deep cracks
d) No joints
e) None


Answer: b
5) Slope stability factor of safety is —

a) Strength ÷ Height
b) Width ÷ Depth
c) Strength ÷ Stress
d) Height ÷ Angle
e) None
Answer: c
6) Minimum FOS for final pit slopes —

a) 1.0
b) 1.1
c) 1.4–1.5
d) 2.0
e) None
Answer: c
7) Drainage improves stability by reducing —

a) Friction
b) Pore pressure
c) Cohesion
d) Tensile strength
e) None
Answer: b
8) Pre-splitting is a —

a) Loading technique
b) Controlled blasting method
c) Pumping system
d) Surveying method
e) None
Answer: b
9) RMR stands for —

a) Rock Machine Rating
b) Rock Mass Rating
c) Resistivity Mining Ratio
d) Rock Mechanical Resistance
e) None
Answer: b
10) Slope failure signs include —

a) Dry cracks
b) Bulging at toe
c) Good fragmentation
d) Constant seepage
e) None
Answer: b
11) A catch berm is used to —

a) Raise toe
b) Store water
c) Stop falling rocks
d) Strengthen pit floor
e) None
Answer: c
12) SSR is used for —

a) Blasting
b) Real-time slope monitoring
c) Haulage control
d) Lighting
e) None
Answer: b
13) Slope stability is affected by —

a) Tire pressure
b) Bench illumination
c) Geological structures
d) Uniform blasting
e) None
Answer: c
14) Excessive blasting causes —

a) Better slope
b) Overbreak
c) Stronger wall
d) Lower vibration
e) None
Answer: b
15) Drainage holes are also called —

a) Window holes
b) Horizontal drains
c) Drill holes
d) Core holes
e) None
Answer: b
16) Most dangerous slope failure —

a) Ravelling
b) Rockfall
c) Wedge failure in large benches
d) Scaling
e) None
Answer: c
17) Slope monitoring instrument —

a) Vibrator
b) Total Station
c) Shovel
d) Dozer
e) None
Answer: b
18) Circular failure surface shape —

a) Straight

b) Zigzag
c) Arc-like
d) Vertical
e) None
Answer: c
19) Water seepage leads to —

a) Slope strengthening
b) Weakening of rock mass
c) Hardening
d) Better fragmentation
e) None
Answer: b
20) Controlled blasting reduces —

a) Strength
b) Damage to slope
c) Height
d) Haul distance
e) None
Answer: b
21) Clay seams reduce —

a) Pore pressure
b) Density
c) Friction angle
d) Bench width
e) None
Answer: c
22) Excessive rainfall leads to —

a) Better slope
b) Drainage failure
c) Higher friction
d) Strong rock
e) None
Answer: b
23) Radar monitoring detects —

a) Light
b) Heat
c) Slope movement
d) Gas
e) None
Answer: c
24) Toppling failure is identified by —

a) Vertical slabs
b) Forward-leaning blocks
c) Backward rotation
d) Loose soil
e) None
Answer: b
25) Slope failure prevention starts with —

a) Extra blasting
b) Removing drainage
c) Proper bench design
d) Random excavation
e) None
Answer: c
                        🔚 Conclusion

Slope stability is essential for ensuring the safety, economy, and longevity of opencast mines.
By understanding geological structures, water conditions, blasting impacts, and adopting stabilization techniques such as:
  • Drainage
  • Benching
  • Controlled blasting
  • Bolting & meshing
  • Monitoring instruments
…operators can prevent catastrophic failures and ensure smooth, safe mining operations.


🚀  Download DGMS Mine Planning Notes at OnlineMiningExam.com
🔔 Join OME Telegram for daily DGMS MCQs, diagrams & planning tips


{{ONLINEMININGEXAM.COM}}
India's 1st Online Mining Academy Prepare for DGMS 1st Class & 2nd Class Mining Manager......

OUR COURSES View More

/* Banner container */ #omxBanner { position: fixed; left: 50%; bottom: -120px; /* hidden initially */ transform: translateX(-50%); width: min(980px, calc(100% - 20px)); max-width: 980px; background: linear-gradient(90deg,#0f172a,#0b84ff); color: #fff; border-radius: 12px 12px 8px 8px; padding: 11px 14px; /* reduced (80%) */ box-shadow: 0 12px 30px rgba(3,10,30,0.45); display: flex; gap: 10px; align-items: center; z-index: 2000; transition: bottom 450ms cubic-bezier(.2,.9,.3,1), transform 250ms; font-family: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", Arial; } /* Show class slides banner up */ #omxBanner.show { bottom: 20px; } /* Left: icon / logo */ #omxBanner .left { flex: 0 0 51px; /* 80% of 64px */ height: 51px; border-radius: 6px; background: linear-gradient(135deg,#00d4ff,#0077ff); display:flex; align-items:center; justify-content:center; font-weight:700; color:#002; font-size:16px; /* reduced */ } /* Middle: text */ #omxBanner .center { flex: 1 1 auto; min-width: 0; } #omxBanner .center h4 { margin: 0 0 3px 0; font-size: 13px; /* reduced */ line-height: 1.1; letter-spacing: 0.2px; } #omxBanner .center p { margin: 0; font-size: 11px; /* reduced */ opacity: 0.95; } /* Right: CTA & close */ #omxBanner .right { display:flex; gap:6px; align-items:center; } #omxBanner .cta { background: linear-gradient(90deg,#ffb703,#fb8500); color: #07122a; border: none; padding: 8px 11px; /* reduced */ border-radius: 6px; font-weight: 700; cursor: pointer; text-decoration: none; font-size: 12px; /* reduced */ box-shadow: 0 6px 14px rgba(251,133,0,0.22); } #omxBanner .cta:active { transform: translateY(1px); } #omxBanner .closeBtn { background: transparent; border: none; color: rgba(255,255,255,0.9); font-size: 16px; /* reduced */ cursor: pointer; padding: 4px; line-height:1; } /* Mobile tweaks */ @media (max-width:600px) { #omxBanner { flex-direction: column; gap:6px; align-items:flex-start; padding:9px; bottom: 10px; width: calc(100% - 18px); left: 50%; transform: translateX(-50%); } #omxBanner .left { display:none; } #omxBanner .right { width:100%; justify-content: space-between; } #omxBanner .cta { width:48%; text-align:center; padding:8px 6px; font-size:11px; } }